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SUMMARY

This paper is concerned with the numerical simulation of the ¯ow structure around a square cylinder in a uniform
shear ¯ow. The calculations were conducted by solving the unsteady 2D Navier±Stokes equations with a ®nite
difference method. The effect of the shear parameter K of the approaching ¯ow on the vortex-shedding Strouhal
number and the force coef®cients acting on the square cylinder is investigated in the range K� 0�0±0�25 at
various Reynolds numbers from 500 to 1500. The computational results are compared with some existing
experimental data and previous studies. The effect of shear rate on the Strouhal number and the force acting on
the cylinder has a tendency to reduce the oscillation. The Strouhal number, mean drag and amplitude of the
¯uctuating force tend to decrease as the shear rate increases, but show no signi®cant change at low shear rate.
Increasing the Reynolds number decreases the Strouhal number and increases the force acting on the cylinder. At
high shear rate the shedding frequencies of the ¯uctuating drag and lift coef®cients are identical. # 1997 John
Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 25: 1409±1420 (1997).

No. of Figures: 11 No. of Tables: 01 No. of References: 18.

KEY WORDS: vortex shedding; shear ¯ow; Strouhal number; square cylinder;

1. INTRODUCTION

The ¯ow past bluff structures is a classic and important problem in ¯uid mechanics. It is frequently

associated with periodic vortex shedding, causing dynamic forces on the structures. The velocity of

the approaching stream may vary in the direction normal to a generator of the body. A typical

relevant case might be that of a long-span structure such as a suspension bridge or a pipeline system

which is parallel to the ground or water surface present in the planetary boundary layer. In the

consideration of the shearing effect an important variation of the basic ¯ow is the situation where the

incoming freestream is a uniform shear ¯ow. It is obviously implied that a constant vorticity and

energy production are embedded in the freestream and this gives rise to complicated interations

associated with ¯ow separations. Therefore it is important to understand the mechanism of vortex

shedding behind the bluff body under the effect of the presence of shear in the approaching stream.

The problem of vortex shedding behind a rectangular cylinder in uniform ¯ows has recently been
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investigated both numerically and experimentally by many researchers.1±5 Patankar and Kelkar6 also

investigated the onset of vortex shedding by means of a linear stability analysis of the steady ¯ow.

The structure of vortex shedding behind a square cylinder in a channel was recently investigated

numerically by Davis et al.7 and Biswas et al.8 to study the effect of the wall on the ¯ow

characteristics of vortex shedding.

The effect of freestream shear on the formation of the wake, the vortex-shedding mechanism, etc.,

on the other hand, is a topic of recent origin. Kiya et al.9 and Sung and Hgun10 investigated

experimentally the vortex shedding from a circular cylinder in moderate-Reynolds-number shear

¯ows. Ayukawa et al.11 conducted a theoretical and experimental study on the effect of shear rate on

the Strouhal number for a square cylinder in a uniform shear ¯ow. In Ayukawa et al.'s simulation the

¯ow is assumed to be the superposition of a potential ¯ow which consists of a system of vortex

®laments representing approximately the square cylinder. No Reynolds number variation was

considered in their study.

It is expected that the shear rate in¯uences not only the vortex shedding but also the ¯ow pattern in

the wake of the cylinder, which causes environmental disturbance downstream of a large structure.

The purpose of this study is to investigate the effects of various shear strengths and Reynolds

numbers on the periodic shedding motion behind a square cylinder by solving the full Navier±Stokes

equations with numerical techniques. The advantage of a numerical simulation is the accessibility of

a detailed analysis and nuances of ¯ow development. Two parameters usually govern the uniform

¯owÐone is the shear strength and the other is the Reynolds number. The aim of the present study is

to investigate the in¯uence of these parameters on the frequency of vortex shedding and the

aerodynamic forces acting on the square cylinder.

2. STATEMENT OF PROBLEM

The physical problem considered in this study is a two-dimensional, viscous, incompressible ¯ow

around a square cylinder placed in a uniform shear ¯ow. Figure 1 shows the geometry and co-

ordinates of the ¯ow problem. Far upstream of the cylinder the approaching stream is assumed to

have a linear shear velocity

u � U0 � Gy; �1�
in which U0 is the speed of the undisturbed stream at the centre of the cylinder and G is the transverse

velocity gradient of the shear ¯ow. By de®ning a length B, the width of the cylinder, and the velocity

U as characteristic parameters, the governing equations for continuity and momentum may be

expressed in the dimensionless conservative form
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Here x and y are the co-ordinates of a ®xed Cartesian system, t is the dimensionless time, u and v are

the dimensionless velocity components in the x- and y-direction respectively, p � P=rU2
0 is the

dimensionless pressure and Re � U0B=n is the Reynolds number.

In order to make the problem computationally feasible, arti®cial con®ning boundaries are placed

suf®ciently far from the body so that their presence has little effect on the characteristics of the ¯ow
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near the square cylinder. Figure 2 shows the computational domain. The governing equations (2)±(4)

subject to the appropriate boundary conditions are to be solved by an appropriate numerical

technique. The boundary conditions of interest in this study are as follows.

At the top and bottom boundaries of the domain,

@u

@y
� v � 0: �5�

At the entrance to the domain a uniform shear ¯ow condition given by equation (1) has been

employed. At the exit from the domain a Neumann-type boundary condition is used by setting

@u

@x
� @v
@x
� 0: �6�

This ensures smooth transition through the outlet. No-slip boundary conditions for the velocities on

the square cylinder are used.

3. METHOD OF SOLUTION

A modi®ed version of the marker-and-cell (MAC) method13 is used to obtain the numerical solution

of equations (2)±(4). The computational domain is divided into Cartesian cells are shown in Figure 3.

Staggered grid arrangements are used in which velocity components are de®ned at the midpoints of

the cell sides to which they are normal. The pressure is de®ned at the centre of the cell as shown in

Figure 4.

Figure 1. Considered ¯ow problem

Figure 2. Computational domain and boundary conditions for considered ¯ow
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A time-dependent solution is obtained by advancing the ¯ow ®eld variables through a sequence of

short time steps of duration dt. The advancement for one time step is calculated in two stages. First

the velocity components are all advanced using the previous state of the ¯ow to calculate the

accelerations caused by convection, viscous stress, pressure gradients, etc. In other words, stage one

consists of a single explicit calculation. However, this explicit time advancement does not necessarily

lead to a velocity ®eld with zero divergence. Thus, in stage two, adjustments must be made to ensure

mass conservation. This is done by adjusting the pressure in each cell in such a way that there is no

net mass ¯ow into or out of the cell. A change in one cell will affect neighbouring cells, so this

pressure adjustment must be performed iteratively until all cells have simultaneously achieved a zero

mass change. This iterative correction of explicitly advanced velocity ®elds through an implicit

continuity equation is equivalent to the solution of a Poisson equation for pressure.12 In the iterative

pressure±velocity correction process the overrelaxation factor is chosen as 1�8. Iterations continue

until the divergence-free velocity ®eld is obtained. However, for this purpose the divergence D in

each cell is brought below a preassigned small value e. In the present case e is typically 1075.

In the original SOLA method the convective terms are modelled by a weighted average of upwind

and central differencing13 which is controlled by a weighting factor. The general form at �i� 1
2
; j� is

fux � �ui�1=2; j=dxa��dxi�1DUL� dxiDUR � y sgn�u��dxi�1DULÿ dxiDUR��; �7�

where

DUL � �ui�1=2; j ÿ uiÿ1=2; j�=dxi; DUR � �ui�3=2; j ÿ ui�1=2; j�=dxi�1;

dxa � dxi�1 � dxi � y sgn�u��dxi�1 ÿ dxi�

Figure 3. Finite difference mesh with variable rectangular cells

Figure 4. Location of variables in typical mesh cell
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and sgn(u) means the sign of ui�1=2; j. When y � 0, this approximation reduces to a second-order-

accurate centred difference approximation. When y � 1, the ®rst-order upwind is recovered. It was

found that the simulation was strongly dependent on the weighting factor1 and thus it was decided to

utilize the higher-order QUICK scheme.14 It has been proved that Leonard's scheme no longer has

third-order accuracy when applied to non-uniform grids and can have large errors when grid non-

uniformity becomes important.15 In this study we thus use a counterpart of the QUICK scheme which

is suitable for non-uniform grids.15 For ui�1=2; j > 0,

fux � ui�1=2; j�auiÿ3=2; j � buiÿ1=2; j ÿ �a� b� g�ui�1=2; j � gui�3=2; j�; �8�
where

a � ab

c�c� a��cÿ b� ; b � ac

b�b� a��bÿ c� ; g � bc

a�a� b��a� c� ;
a � dxi�1; b � dxi; c � dxi � dxiÿ1:

For uniform grids with c=2 � a � b � dx the coef®cients are the same as in QUICK. This type of

approximation is used for all convective terms appearing in equations (3) and (4). Viscous diffusion

terms are approximated with standard centred approximations.

The conditions necessary to prevent numerical instabilities are determined from the Courant±

Friedrichs±Lewy (CFL) condition and the restriction on the grid Fourier numbers. First, material

cannot move through more than one cell in one time step, because the difference equations assume

¯uxes only between adjacent cells. Therefore the time increment must satisfy the inequality

dt < min
dxi

jui; jj
;
dyj

jvi; jj

( )
; �9�

where the minimum is with respect to every cell in the mesh. Typically, dt is chosen equal to one-

fourth to one-third of the minimum cell transit time. Second, when a non-zero value of kinematic

viscosity is used, momentum must not diffuse more than approximately one cell in one time step. A

linear stability analysis shows that this limitation implies

ndt <
1

2

dx2
i dy2

j

2dx2
i � dy2

j

: �10�

A somewhat more detailed description of the present solution algorithm has been discussed

elsewhere.16 The computations have been performed on a CONVEX-C3420 and HP-735 system.

4. RESULTS AND DISCUSSION

For the present computations 1206110 and 1806160 grids have been used. The grid is ®ner near the

surfaces of the square cylinder to better resolve the gradients near the wall. The ®rst point at a

distance from each wall is 0�01B. The computational results for 1206110 and 1806160 grids show

an average difference of 1�5% in the average drag coef®cient for uniform ¯ow at Re� 500. However,

the computational time with 1806160 grids is much longer than with 1206110 grids. It can thus be

said that for most practical purposes 1206110 grids can produce grid-independence results.

In order to assess the accuracy of the numerical computation of the present study, the case of a

uniform ¯ow past a square cylinder was computed for Re� 500, 1100 and 1500 and compared with

previous studies. In Figure 5(a) we compare the variation in Strouhal number with Reynolds number

with experimental data of Okajima.3 Figure 5(b) is the computed average drag coef®cient �CD

compared with some predicted results of Davis and Moore,1 Arnal et al.17 and Li and Humphrey.18
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The computed Strouhal numbers of this study fall within the experimental results of Okajima. The

computed average drag coef®cients are also in close agreement with numerical results of previous

studies. We then use the present numerical model to simulate the uniform shear ¯ow over a square

cylinder.

There are two non-dimensional parameters which govern the ¯ow around a square cylinder in a

uniform shear ¯ow, i.e. the Reynolds number Re and the shear parameter K which are de®ned by

Re � U0B=n and K � GB=U0 respectively, where n is the kinematic viscosity of the ¯uid. The shear

parameter can be interpreted as the non-dimensional vorticity of the shear ¯ow. Computations have

been carried out for ¯ow over a rectangular cylinder in a uniform shear ¯ow for various combinations

of the parameter Re and K.

Figure 5. Comparison among (a) Strouhal number (St) and (b) drag coef®cient � �CD� results for ¯ow past a square cylinder in a
freestream

Figure 6. Variation in Strouhal number with shear rate at different Reynolds numbers
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The effect of the shear rate G on the ¯ow development behind a square cylinder was investigated

via the shear parameter K de®ned by GB=U0. All the results in the numerical calculations were

obtained in the range of the stationary periodic ¯ow pattern. In order to compare the computed results

with the existing experimental data and theoretical study,11 the calculated Strouhal number St,

representing a frequency f of the periodic ¯ow pattern, de®ned by fB=U0 was obtained in relation to

the shear parameter K and is shown in Figure 6. Since the simulation of Ayukawa et al.11 used the

discrete vortex model of the superposition of a potential ¯ow, no Reynolds number was quoted in

their study. Compared with the present study, their theoretical results coincided with the high

Reynolds number Re � 1500, while the experimental results are in fairly good agreement with the

case of Re � 500. The Strouhal number tends to decrease as the shear rate increases, but shows no

Figure 7. Effect of shear rate on mean lift coef®cient at different Reynolds numbers

Figure 8. Effect of shear rate on RMS value of ¯uctuation of lift coef®cient at different Reynolds numbers
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signi®cant change at low shear rate. On the other hand, the Strouhal number decreases clearly as the

Reynolds number increases.

Accompanying the periodic motion of the ¯ow pattern, oscillation occurred in the lift on the square

cylinder at the same frequency as the ¯uctuation of the ¯ow motion. The amplitude of the ¯uctuation

of lift was fairly large compared with the mean lift in the shear ¯ow. Figures 7 and 8 show the effect

of the shear parameter on the mean and RMS lift coef®cients �CL and C0Lrms respectively. Results of

Ayukawa et al.'s study are also included for comparison. The mean lift coef®cient increases sharply

as the shear rate increases, in good agreement with the experiments. The simulation of Ayukawa et al.

indicated that the change in mean lift coef®cient, performing an irregular oscillation at high shear

parameter, seems to be incorrect. The RMS lift coef®cient tends to decrease as the shear rate

increases at high shear rate and it increases its ¯uctuation with increasing Reynolds number.

The drag coef®cient CD, de®ned similarly to the lift coef®cient as F= 1
2
rU0

2 A, ¯uctuates much less

than the lift coef®cient, though a marked oscillation appears at high shear rate. The mean drag

Figure 9. Effect of shear rate on mean drag coef®cient at different Reynolds numbers

Table I. Effect of freestream shearing on Strouhal number, drag and lift

K St CD CDrms CLrms CL

Re� 500 0�00 0�137 1�884 0�030 1�011 0�000
0�05 0�137 1�880 0�034 1�013 0�096
0�15 0�133 1�867 0�056 1�000 0�248
0�25 0�127 1�801 0�092 0�926 0�405

Re� 1100 0�00 0�124 2�052 0�036 1�271 0�000
0�05 0�126 2�048 0�038 1�269 0�164
0�15 0�121 2�013 0�041 1�243 0�305
0�25 0�108 1�983 0�086 1�143 0�460

Re� 1500 0�00 0�123 2�134 0�040 1�317 0�000
0�05 0�116 2�130 0�047 1�316 0�239
0�15 0�112 2�093 0�062 1�287 0�365
0�25 0�106 2�022 0�083 1�186 0�528

1416 R. R. HWANG AND Y. C. SUE

INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1409±1420 (1997) # 1997 John Wiley & Sons, Ltd.



Figure 10. Time history of drag coef®cient and its ¯uctuating spectrum for various shear rates at Re� 500
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Figure 11. Time history of lift coef®cient and its ¯uctuating spectrum for various shear rates at Re� 500

1418 R. R. HWANG AND Y. C. SUE

INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1409±1420 (1997) # 1997 John Wiley & Sons, Ltd.



coef®cient �CD is shown in Figure 9. It is in good agreement with the experiments at high Reynolds

number. The mean drag coef®cient decreases as the shear rate increases at high shear parameter, but

the change is fairly small at low shear parameter. With increasing Reynolds number of the ¯ow the

mean drag coef®cient is seen to increase within the extent of our simulation. Table I gives the

Strouhal number and the average and RMS values of lift and drag coef®cients for different shear

parameters at various Reynolds numbers.

Figures 10 and 11 show the computed histories of instantaneous drag and lift coef®cients with their

corresponding power spectra of ¯uctuation, S, respectively for various shear parameters at Re� 500.

In shear ¯ow the asymmetry of the freestream excites the ¯uctuation motion of the vortex wake and

causes the onset of vortex shedding to occur earlier than for a uniform stream. In the case of uniform

¯ow �K � 0�, one harmonic oscillation exists for both instantaneous drag and lift coef®cients in the

vortex-shedding motion, and the frequency of the ¯uctuation of CD is nearly twice that of CL. For

shear ¯ow �K 6� 0�, although the ¯uctuating lift coef®cient still has one harmonic like that for K � 0,

a subharmonic has entered into the ¯uctuation of CD. The strength of the subharmonic increases as

the shear rate increases, and the ¯uctuation frequencies of CL and CD become identical at K 5 0�15.

5. CONCLUSIONS

With the numerical simulation of a ®nite difference method, the unsteady ¯ow pattern around a

square cylinder in a uniform shear ¯ow was successfully obtained. The effect of shear rate on the

cylinder tends to reduce the oscillation of the vortex wake behind the cylinder as the shear rate

increases. The Strouhal number, mean drag and RMS lift coef®cients tend to decrease as the shear

rate increases, but show no signi®cant change at low shear parameter. The mean lift shows a clear

increase with increasing shear rate. Owing to the shear rate effect of the freestream, a subharmonic is

induced in the ¯uctuation of drag force and its strength increases as the shear rate increases. For a

shear parameter K 5 0�15 the frequencies of the ¯uctuating lift and drag coef®cients become the

same.
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